Oscillations in the Double-Photoionization Cross Section of Li Near Threshold

R. Wehlitz,1 J. B. Bluet,1 and S. B. Whitfield2
1Synchrotron Radiation Center, UW–Madison, WI; 2Phys. Dept., UW–Eau Claire, WI

Introduction:
The threshold region of the double-photoionization (DPI) cross section of lithium was investigated using monochromatized synchrotron. Two conceptually different theories, namely the Wannier theory [G. H. Wannier, Phys. Rev. 90, 817 (1953)] and the Coulomb-Dipole theory [A. Temkin, Phys. Rev. Lett. 49, 365 (1982)], were developed to describe the near-threshold DPI cross sections \(s^1 \). The Wannier theory predicts \(s^1 = s_0 \exp(-aE) \) where \(a=1.056 \) is the Wannier exponent, \(s_0 \) a proportionality constant, and \(E \) the excess energy. In contrast to this power law, the Coulomb-dipole theory by Temkin predicts an oscillating but nevertheless monotonically increasing cross section \(s^1 \sim E^{0.5} \). The in the case of DPI, this equation is not strictly valid but may be a good approximation as recent calculations show. So far, only DPI experiments that tested the Wannier power law on atoms by measuring ions was performed on He [H. Kossmann, V. Schmidt, and T. Andersen, Phys. Rev. Lett. 60, 1266 (1988)] and oxygen (Z. X. Ho, R. Moberg, and J. A. R. Samson, Phys. Rev. A 52, 4595 (1995)].

First we tried to apply the Wannier power law to our data. The resulting fit curve along with our data is shown in Fig. 1. Then we applied the Coulomb-dipole theory and achieved a much better fit with \(s^1 \) decreasing from 81.8 to 26.3.

Experiment:
The experiment was performed at the Synchrotron Radiation Center (SRC) at the U3 undulator beamline. The photons were monochromatized with a 1200 line/mm plane grating. The entrance and exit slits were set at 170 \(\mu \text{m} \) and 100 \(\mu \text{m} \), respectively, yielding a photon-energy resolution of approximately 30 meV at 80 eV.

The vacuum chamber consists mainly of a standard conical 8" six-way cross and an 8" tee. It accommodates an ion time-of-flight (TOF) spectrometer, a metal vapor oven, an LN\(_2\) cooled trap, and a 1000 l/s turbo molecular pump.

In order to measure partial ion yields of \(\text{Li}^+ \) and \(\text{Li}^{2+} \) ions we employed an ion time-of-flight (TOF) spectrometer. The ion TOF was operated in the pulsed extraction mode. A pulsed electric field across the interaction region provided a start pulse, while the detection of an ion on a Z-stack MCP detector provided a stop pulse for the flight-time measurement. Details of the apparatus can be found in Wehlitz et al., Rev. Sci. Instrum. 73, 1671 (2002).

Acknowledgements:
The authors wish to thank the staff of the Synchrotron Radiation Center for their excellent support. We also wish to thank Dr. A. Temkin for valuable discussions.

This work was supported by the National Science Foundation under Grant No. PHY-9987638. The Synchrotron Radiation Center is supported by the NSF under Award No. DMR-0084402.